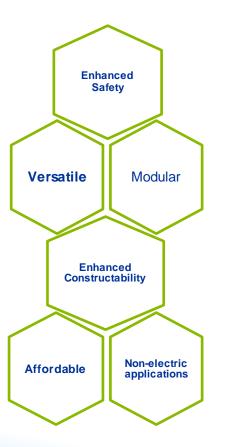


ABDAN-WNA Mini Course on SMR and Microreactors at Nuclear Summit 2022, 26 – 28 April 2022 (Virtual Event)


Implementation and Deployment Issues: Technology Roadmap for SMR Deployment

Benoît LEPOUZÉ

Senior nuclear expert - Nuclear Power Technology Development Division of Nuclear Power, Department of Nuclear Energy

Development Objectives of SMRs

Economic

- Lower Upfront capital cost
- Economy of serial production

Modularization

- Multi-module
- Modular Construction

Flexible Application

- · Remote regions
- · Small grids

Smaller footprint

 Reduced Emergency planning zone

Replacement for aging fossil-fired plants

Potential Hybrid Energy System

Better Affordability

Shorter construction time

Wider range of Users

Site flexibility

Reduced CO₂ production

Integration with Renewables

Driving Factors & Opportunities for SMRs

Cost Affordability

Small Power, Innovation, Standardization

Short Construction Span

Design Simplification, Modularization

Energy Resilience

Flexibility and ensured energy supply

Energy Sustainability

Hybrid with Renewables, Replace Retiring Fossil Plants

Typically up to 300 MWe, High Degree of Modularity, Option to Energy Supply in Countries with Smaller Grids: Contribute to Climate Change Mitigation

70+ SMR Designs in the World

Land Based Water Cooled Reactors

		000 - 500	
CAREM	SMART	RUTA-70	DHR400
ACP100	UNITHERM	NuScale	RITM-200
CAP200	VK-300	mPOWER	NUWARD
IRIS	KARAT-45	W-SMR	BWRX-300
DMS	KARAT-100	SMR-160	HAPPY200
IMR	ELENA	UK-SMR	CANDU SMR

Micro Reactors

7 (46	5 20 CM
IHTR	MMR-5
IMSBR	MMR-10
eVinci	AURORA
U-Battery	MoveluX

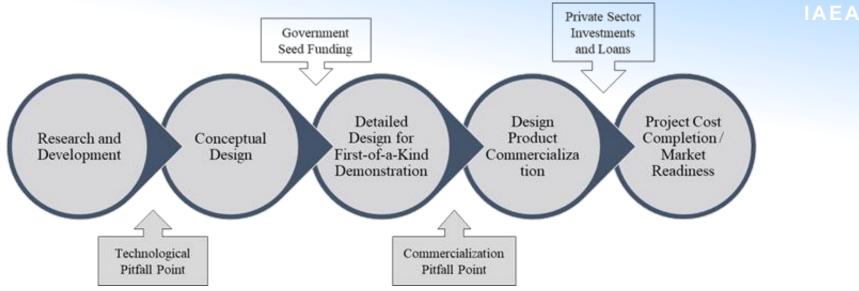
Fast Reactors

×	4S	W-LFR	SSTAR LFR
`	BREST-OD-300	SEALER	URANUS
	SVBR-100	LFR-AS-200	ARC100
EM ² LFR-TL-X		TL-X	

High Temperature Gas-cooled Reactors

	HTR-PM	MHR-100	XE-100	HTTR-30
	DPP-200	PBMR-400	A-HTR 100	HTR-10
	GT-MHR	HTMR-100	MMR	RDE
	MHR-T	SC-HTGR	GTHTR300	StarCore

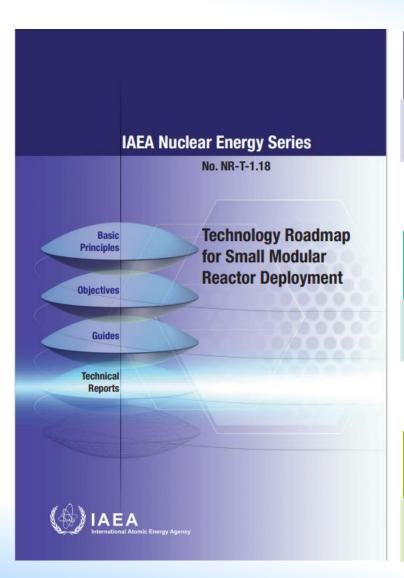
Marine Based Water Cooled Reactors


ACPR50S	VBER-300	
KLT-40S	ABV-6E	
RITM-200M	SHELF	

Molten Salt Reactor

IMSR	SSR-WB	CA WB
CMSR	SSR-TS	KP-FHR
THORCON	LFTR REACTOR	MCSFR
FUJI ITMSF	MK1 PB-FHR	

Technology Roadmaps for SMR Deployment



IAEA Nuclear Energy Series NR-T-1.18: Technology Roadmap for SMR Deployment

Organization	Department of Nuclear Energy, Nuclear Power Technology Development Section	
Objective	To provide Member States with several 'model' technology roadmaps to be adapted for their specific SMR deployment projects	
Structure and content	 Current status of SMR deployment, the importance of infrastructure development, and summary of different types of technology roadmap Impediments to deployment of SMR Technology Presents Roadmaps that can be either followed or adopted with adjustment to suit specific needs of Member States 	
Publication date	August 2021: https://www.iaea.org/publications/14861/technology-roadmap-for-small-modular-reactor-deployment	5

NE Series No. NR-T-1.18 (8/2021)

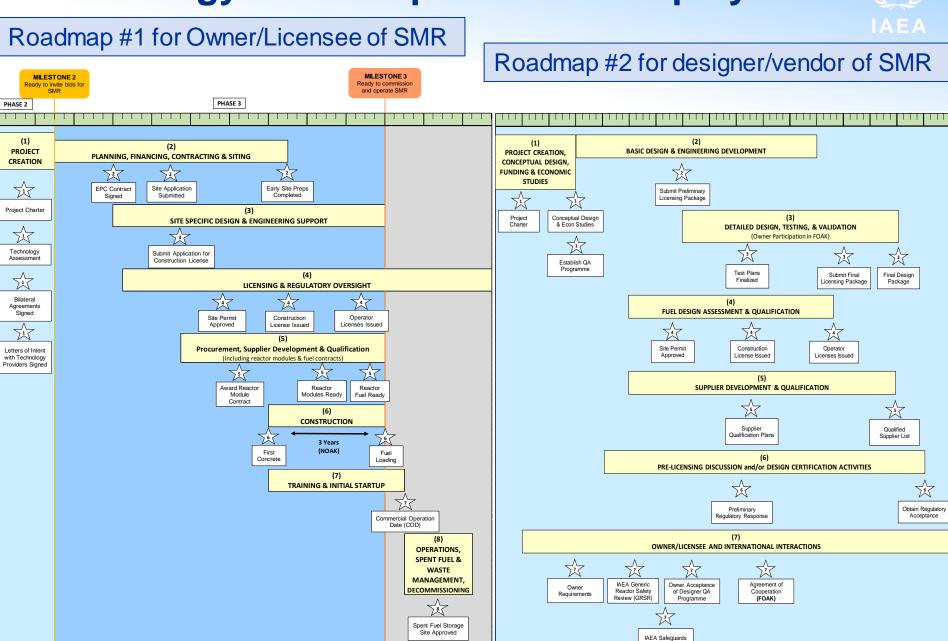
SMRs and the Technology Roadmap

Current Deployment Status, Nuclear Power Infrastructure, Techno Roadmap Concept

Prospects, Impediments & Indicators

Issues, Impediments, Indicators of SMR Deployment, Stakeholders, Regulatory Frameworks

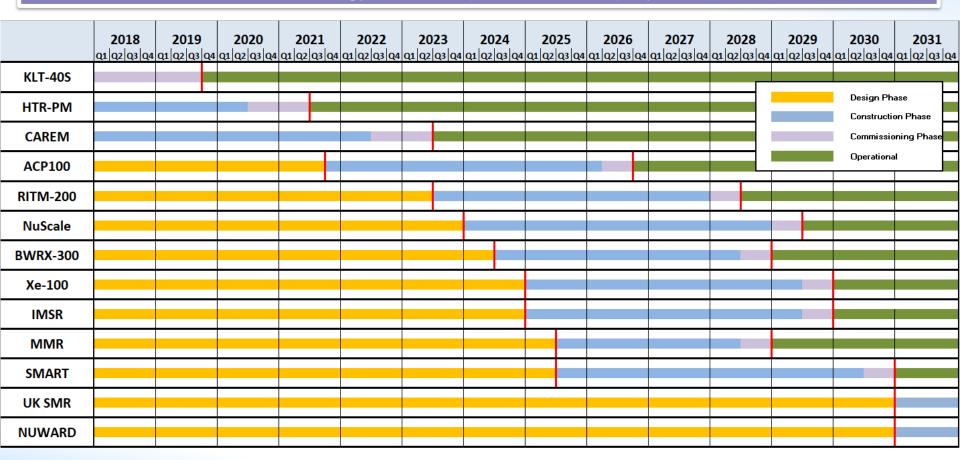
Technology Roadmap for Near Term Deployable Small Modular Reactor Technology


Generic Roadmaps for: (1) Owner/Operating Organization and (2) Designer/Supplier

Limited Hardcopies are available. Public download from this link:

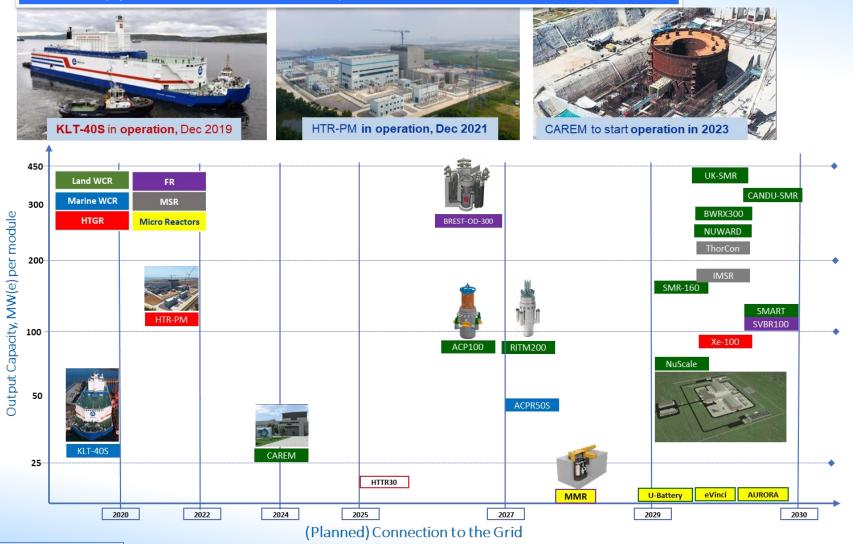
https://www.iaea.org/publications/14861/technology-roadmap-for-small-modular-reactor-deployment

Technology Roadmaps for SMR Deployment



Technology Roadmap for SMR Deployment

IAEA Nuclear Energy Series NR-T-1.18: Technology Roadmap for SMR Deployment



Timeline of Deployment of some SMR designs up to 2030/2031 that reflects the Technology Roadmaps for Owner/Licensee and Technology Developer

First 10-year Deployment Horizon

The four (4) SMR Forerunners: 2 in operation, 2 under construction

Codes & Standards – Applicability to SMRs

Key Advantage #1: Enabling Design Simplification

- Minimized number of systems and components without compromising safety;
- Simplification to improve economics, maintainability and availability of components without compromising safety.

Key Advantage #2: Confirm a robust supply chain:

- Assure 'diverse' supply for replacement by manufacturers other than the original manufacturers;
- Improve the assurance of sustainable operation of the nuclear power plant.

Findings on Standardization:

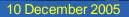
- Standardization alone will not solve all issues in advanced reactor product development;
- Excellence in applying advanced manufacturing and NDE techniques are often proprietary; not readily shareable or standardized because it would benefit competitors
- The biggest challenge to quality product is to having the capability of designing, manufacturing and delivering, within time and budget, products that meet the requirements

SMR Development should increasingly apply codification and standardization of Advanced Manufacturing Techniques to realize high degree of Modularity

Prospects and Actions for Deployments

Demonstration of Safety and Operational Performance of FOAK, Novel Designs & Technologies Continuity of Orders, cost competitiveness against alternatives, robust supply chain, and viable financing Option

SMR Deployment Competitiveness


Regulatory framework, licensing pathways: global deployment, need of harmonization?

Development of Nuclear Infrastructure for near-term deployment particularly in Embarking countries

1958 to 1979

Thank you for your attention!

Contact: SMR Technology Development Team IAEA/NENP/NPTDS SMR@iaea.org

23 August 1979

Atoms for peace and Development..